These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Theoretical studies on structures and spectroscopic properties of a series of novel cationic [trans-(C/N)2Ir(PH3)2]+ (C/N = ppy, bzq, ppz, dfppy). Author: Liu T, Zhang HX, Xia BH. Journal: J Phys Chem A; 2007 Sep 06; 111(35):8724-30. PubMed ID: 17696505. Abstract: The geometries, electronic structures, and spectroscopic properties of a series of novel cationic iridium(III) complexes [trans-(C/N)(2)Ir(PH(3))(2)]+ (C/N = 2-phenylpyridine, 1; benzoquinoline, 2; 1-phenylpytazolato, 3; 2-(4,6-difluorophenyl)pyridimato, 4) were investigated theoretically. The ground- and excited-state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. The optimized geometry structural parameters agree well with the corresponding experimental results. The unoccupied molecular orbitals are dominantly localized on the C/N ligand, while the occupied molecular orbitals are composed of Ir atom and C/N ligand. Under the time-dependent density functional theory (TDDFT) level with the polarized continuum model (PCM) model, the absorption and phosphorescence in acetonitrile (MeCN) media were calculated based on the optimized ground- and excited-state geometries, respectively. The calculated results showed that the lowest-lying absorptions at 364 nm (1), 389 nm (2), 317 nm (3), and 344 nm (4) are all attributed to a {[d(yz)(Ir) + pi(C/N)] --> [pi*(C/N)]} transition with metal-to-ligand and intraligand charge transfer (MLCT/ILCT) characters; moreover, the phosphorescence at 460 (1) and 442 nm (4) originates from the 3{[d(yz)(Ir) + pi(C/N)] [pi*(C/N)]} (3)MLCT/(3)ILCT excited state, while that at 505 (2) and 399 nm (3) can be described as originating from different types of (3)MLCT/(3)ILCT excited state (3){[d(xy)(Ir) + pi(C/N)] [pi*(C/N)]}. The calculated results also revealed that the absorption and emission transition character can be altered by adjusting the pi electron-withdrawing groups and, furthermore, suggested that the phosphorescent color can be tuned by changing the pi-conjugation effect of the C/N ligand.[Abstract] [Full Text] [Related] [New Search]