These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Co-ingestion of leucine with protein does not further augment post-exercise muscle protein synthesis rates in elderly men. Author: Koopman R, Verdijk LB, Beelen M, Gorselink M, Kruseman AN, Wagenmakers AJ, Kuipers H, van Loon LJ. Journal: Br J Nutr; 2008 Mar; 99(3):571-80. PubMed ID: 17697406. Abstract: Leucine has been suggested to have the potential to modulate muscle protein metabolism by increasing muscle protein synthesis. The objective of this study was to investigate the surplus value of the co-ingestion of free leucine with protein hydrolysate and carbohydrate following physical activity in elderly men. Eight elderly men (mean age 73 +/- 1 years) were randomly assigned to two cross-over treatments consuming either carbohydrate and protein hydrolysate (CHO+PRO) or carbohydrate, protein hydrolysate with additional leucine (CHO+PRO+leu) after performing 30 min of standardized physical activity. Primed, continuous infusions with L-[ring-(13)C(6)]phenylalanine and L-[ring-(2)H(2)]tyrosine were applied, and blood and muscle samples were collected to assess whole-body protein turnover as well as protein fractional synthetic rate in the vastus lateralis muscle over a 6 h period. Whole-body protein breakdown and synthesis rates were not different between treatments. Phenylalanine oxidation rates were significantly lower in the CHO+PRO+leu v. CHO+PRO treatment. As a result, whole-body protein balance was significantly greater in the CHO+PRO+leu compared to the CHO+PRO treatment (23.8 (SEM 0.3) v. 23.2 (SEM 0.3) micromol/kg per h, respectively; P < 0.05). Mixed muscle fractional synthetic rate averaged 0.081 (SEM 0.003) and 0.082 (SEM 0.006) %/h in the CHO+PRO+leu and CHO+PRO treatment, respectively (NS). Co-ingestion of leucine with carbohydrate and protein following physical activity does not further elevate muscle protein fractional synthetic rate in elderly men when ample protein is ingested.[Abstract] [Full Text] [Related] [New Search]