These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Author: January MC, Cutright TJ, Van Keulen H, Wei R. Journal: Chemosphere; 2008 Jan; 70(3):531-7. PubMed ID: 17697697. Abstract: Sundance sunflowers were subjected to contaminated solutions containing 3, 4, or 5 heavy metals, with and without EDTA. The sunflowers exhibited a metal uptake preference of Cd=Cr>Ni, Cr>Cd>Ni>As and Fe>>As>Cd>Ni>Cr without EDTA and Cr>Cd>Ni, Fe>>As>Cd>Cr>Ni with EDTA. As uptake was not affected by other metals, but it decreased Cd and Ni concentration in the stems. The presence of Fe improved the translocation of the other metals regardless of whether EDTA was present. In general, EDTA served as a hindrance to metal uptake. For the experiment with all five heavy metals, EDTA decreased Cd in the roots and stems from 2.11 to 1.36 and from 2.83 to 2.3 2mg g(-1) biomass, respectively. For the same conditions, Ni in the stems decreased from 1.98 to 0.94 mg g(-1) total metal uptake decreased from 14.95 mg to 13.89 mg, and total biomass decreased from 2.38 g to 1.99 g. These results showed an overall negative effect in addition of EDTA. However it is unknown whether the negative effect was due to toxicity posed by EDTA or the breaking of phytochelatin-metal bonds. The most important finding was the ability of Sundance sunflowers to achieve hyperaccumulator status for both As and Cd under all conditions studied. Ni hyperaccumulator status was only achieved in the presence of three metals without EDTA.[Abstract] [Full Text] [Related] [New Search]