These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of brief and long maternal separations on the HPA axis activity and the performance of rats on context and tone fear conditioning.
    Author: Guijarro JZ, Tiba PA, Ferreira TL, Kawakami SE, Oliveira MG, Suchecki D.
    Journal: Behav Brain Res; 2007 Dec 03; 184(2):101-8. PubMed ID: 17697719.
    Abstract:
    Previous studies show that early life events result in neurobehavioural alterations that may be either beneficial or detrimental to the stress response. Given the close relationship between corticosterone secretion and mnemonic processes, the purpose of the present study was to investigate the effects of brief (BMS, 15 min) and long maternal separations (LMS, 180 min) on memory tasks in adult rats, assessed by context and tone fear conditioning. At adulthood, males were evaluated for behavioural and hormonal reaction to the training environment, being tested for context fear conditioning; tone fear conditioning; and learning curve in the context fear conditioning, in which rats were daily re-exposed to the context, followed by a brief footshock and in the last day of the experiment (day 5) animals were exposed to the context. Corticosterone and ACTH plasma levels were determined in naïve rats (basal) or 5, 25 or 45 min after each test. Peak ACTH and corticosterone levels were similar among the groups after context fear conditioning; however, levels of CTL rats remained elevated for a longer time. In the learning curve of context fear conditioning, both BMS and LMS rats exhibited less freezing behaviour than CTL rats, without differences in hormone secretion. There was neither an association between activity of the HPA axis and performance on memory tasks nor different activational properties of the tasks on the HPA axis between BMS and LMS rats, i.e., both manipulations lead to similar performance in hippocampus-dependent and independent memory tasks.
    [Abstract] [Full Text] [Related] [New Search]