These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterisation of three pathways for osmolyte efflux in human erythroleukemia cells. Author: Huang CC, Hall AC, Lim PH. Journal: Life Sci; 2007 Aug 09; 81(9):732-9. PubMed ID: 17698149. Abstract: Cell volume decrease is a key step during differentiation of erythroid cells. This could arise from membrane transporter activation leading to a loss of cell osmolytes; however, the pathways involved are poorly understood. We have characterised Cl(-)-independent K(+) and (3)H-taurine efflux from the erythroleukemia cell line, K562. K(+) efflux (measured using (86)Rb(+)) from pre-loaded cells subjected to hypo-osmotic challenge demonstrated two phases, a rapid increase in K(+) efflux followed by a smaller slower increase. Swelling-activated taurine efflux only demonstrated a single phase. Both phases of K(+) efflux were significantly (P<0.05) blocked by anion channel inhibitor 5-nitro-2-(3-phenypropylamino)-benzoic acid (NPPB). However the antiestrogen, tamoxifen, only inhibited the slow late phase. The initial rapid phase had a higher IC(50) for NPPB inhibition than the slow phase, and was insensitive to protein kinases inhibitors KN-62, wortmannin and PD98059. For the slow K(+) efflux phase, the IC(50) for NPPB inhibition and the inhibition by KN-62, wortmannin, genistein or PD98059, were very similar to those measured for the hypo-osmotically-activated taurine efflux. With NPPB (100 microM) present, the slow K(+) efflux phase was further significantly decreased by the Ca(2+) chelator BAPTA-AM or by the Ca(2+)-activated K(+) channel blockers clotrimazole and charybdotoxin but not by apamin. Thus, at least 3 Cl(-)-independent pathways are involved: (a) a tamoxifen-sensitive and taurine-permeable anion channel; (b) a tamoxifen-insensitive and taurine-impermeable K(+) efflux pathway; and (c) a subtype of Ca(2+)-activated K(+) channel. Any or all of these could be involved in the cell volume decrease associated with differentiation in K562 cells.[Abstract] [Full Text] [Related] [New Search]