These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Homogeneous solvation controlled photoreduction of cobalt(III) complexes in aqueous 2-methyl-2-propanol solutions linear solvation energy relationship and cyclic voltammetric analyses. Author: Anbalagan K, Lydia IS. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):964-70. PubMed ID: 17698408. Abstract: The effect of solvent participation on the ligand-to-metal charge transfer (LMCT, L-->Co(III)) reduction of the of Co(III)(en)(2)Br(RC(6)H(4)NH(2))(2+) where R=m-OCH(3), p-F, H, m-CH(3), p-CH(3,)p-OC(2)H(5) and p-OCH(3) were examined in aqueous 2-methyl-2-propanol (Bu(t)OH) solutions. The change in the reduction behavior of Co(III) centre was also examined through cyclic voltammetric studies. The observed reduction in quantum yield due to LMCT excitation can mainly be accounted using linear solvation energy relationship (LSER) comprising model correlation equations. These consist of empirical parameters such as Grunwald-Winstein's solvent ionizing power, Y, Dimroth-Richardt's solvent micro-polarity parameter, E(T)(N), Gutmann's donor number, DN(N), along with Kamlet-Taft's solvatochromic parameters (hydrogen bond acceptor acidity/basicity alpha/beta and solvent dipolarity/polarizability, pi*). The origin of solvent effect is found to be due to microscopic interaction between the solvent donor and the nitrogen-bound hydrogen of the ligand. Cyclic voltammograms show an irreversible reduction of Co(III) in DMF using Glassy Carbon Electrode, GCE, the redox peaks for the aniline complexes appear at -0.20 and 0.525V. Irradiation of the complexes with UV light (lambda=254nm) in binary mixtures produce Co(II)(aq) and the concentration of this species are highly dependent on x(alc) (x(alc)=mole fraction of alcohol). The observed quantum yield (logPhi(Co(II))) is found to be linearly related to mole fraction of organic co-solvent added in the mixture, therefore, logPhi(Co(II))=26.41 x 10(-2) when x(2)=0.0094 and 43.75 x 10(-2) when x(2)=0.076 for a typical complex Co(III)(en)(2)Br(p-OCH(3)C(6)H(4)NH(2))(2+) in aqueous 2-methyl-2-propanol at 300K. Cyclic voltammetry and LSER analyses illustrate the variation of reduction property of Co(III) by the aryl ligand and homogeneous solvation of the excited state of the complex Co(III)(en)(2)Br(RC(6)H(4)NH(2))(2+) in H(2)O/Bu(t)OH mixtures.[Abstract] [Full Text] [Related] [New Search]