These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A switch from prohormone convertase (PC)-2 to PC1/3 expression in transplanted alpha-cells is accompanied by differential processing of proglucagon and improved glucose homeostasis in mice. Author: Wideman RD, Covey SD, Webb GC, Drucker DJ, Kieffer TJ. Journal: Diabetes; 2007 Nov; 56(11):2744-52. PubMed ID: 17698597. Abstract: OBJECTIVE: Glucagon, which raises blood glucose levels by stimulating hepatic glucose production, is produced in alpha-cells via cleavage of proglucagon by prohormone convertase (PC)-2. In the enteroendocrine L-cell, proglucagon is differentially processed by the alternate enzyme PC1/3 to yield glucagon-like peptide (GLP)-1, GLP-2, and oxyntomodulin, which have blood glucose-lowering effects. We hypothesized that alteration of PC expression in alpha-cells might convert the alpha-cell from a hyperglycemia-promoting cell to one that would improve glucose homeostasis. RESEARCH DESIGN AND METHODS: We compared the effect of transplanting encapsulated PC2-expressing alpha TC-1 cells with PC1/3-expressing alpha TCDeltaPC2 cells in normal mice and low-dose streptozotocin (STZ)-treated mice. RESULTS: Transplantation of PC2-expressing alpha-cells increased plasma glucagon levels and caused mild fasting hyperglycemia, impaired glucose tolerance, and alpha-cell hypoplasia. In contrast, PC1/3-expressing alpha-cells increased plasma GLP-1/GLP-2 levels, improved glucose tolerance, and promoted beta-cell proliferation. In GLP-1R(-/-) mice, the ability of PC1/3-expressing alpha-cells to improve glucose tolerance was attenuated. Transplantation of PC1/3-expressing alpha-cells prevented STZ-induced hyperglycemia by preserving beta-cell area and islet morphology, possibly via stimulating beta-cell replication. However, PC2-expressing alpha-cells neither prevented STZ-induced hyperglycemia nor increased beta-cell proliferation. Transplantation of alpha TCDeltaPC2, but not alpha TC-1 cells, also increased intestinal epithelial proliferation. CONCLUSIONS: Expression of PC1/3 rather than PC2 in alpha-cells induces GLP-1 and GLP-2 production and converts the alpha-cell from a hyperglycemia-promoting cell to one that lowers blood glucose levels and promotes islet survival. This suggests that alteration of proglucagon processing in the alpha-cell may be therapeutically useful in the context of diabetes.[Abstract] [Full Text] [Related] [New Search]