These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of BKCa channels via cyclic AMP- and cyclic GMP-dependent protein kinases by eugenosedin-A in rat basilar artery myocytes.
    Author: Wu BN, Chen CF, Hong YR, Howng SL, Lin YL, Chen IJ.
    Journal: Br J Pharmacol; 2007 Oct; 152(3):374-85. PubMed ID: 17700725.
    Abstract:
    BACKGROUND AND PURPOSE: The study investigated whether eugenosedin-A, a 5-hydroxytryptamine and alpha/beta adrenoceptor antagonist, enhanced delayed-rectifier potassium (K(DR))- or large-conductance Ca(2+)-activated potassium (BK(Ca))-channel activity in basilar artery myocytes through cyclic AMP/GMP-dependent and -independent protein kinases. EXPERIMENTAL APPROACH: Cerebral smooth muscle cells (SMCs) were enzymatically dissociated from rat basilar arteries. Conventional whole cell, perforated and inside-out patch-clamp electrophysiology was used to monitor K(+)- and Ca(2+)-channel activities. KEY RESULTS: Eugenosedin-A (1 microM) did not affect the K(DR) current but dramatically augmented BK(Ca) channel activity in a concentration-dependent manner. Increased BK(Ca) current was abolished by charybdotoxin (ChTX, 0.1 microM) or iberiotoxin (IbTX, 0.1 microM), but not affected by a small-conductance K(Ca) blocker (apamin, 100 microM). BK(Ca) current activation by eugenosedin-A was significantly inhibited by an adenylate cyclase inhibitor (SQ 22536, 10 microM), a soluble guanylate cyclase inhibitor (ODQ, 10 microM), competitive antagonists of cAMP and cGMP (Rp-cAMP, 100 microM and Rp-cGMP, 100 microM), and cAMP- and cGMP-dependent protein kinase inhibitors (KT5720, 0.3 microM and KT5823, 0.3 microM). Eugenosedin-A reversed the inhibition of BK(Ca) current induced by the protein kinase C activator, phorbol myristyl acetate (PMA, 0.1 microM). Eugenosedin-A also prevented BK(Ca) current inhibition induced by adding PMA, KT5720 and KT5823. Moreover, eugenosedin-A reduced the amplitude of voltage-dependent L-type Ca(2+) current (I(Ca,L)), but without modifying the voltage-dependence of the current. CONCLUSIONS AND IMPLICATIONS: Eugenosedin-A enhanced BK(Ca) currents by stimulating the activity of cyclic nucleotide-dependent protein kinases. Physiologically, this activation would result in the closure of voltage-dependent calcium channels and thereby relax cerebral SMCs.
    [Abstract] [Full Text] [Related] [New Search]