These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclosporin-A treatment attenuates delayed cytoskeletal alterations and secondary axotomy following mild axonal stretch injury. Author: Staal JA, Dickson TC, Chung RS, Vickers JC. Journal: Dev Neurobiol; 2007 Dec; 67(14):1831-42. PubMed ID: 17702000. Abstract: Following central nervous system trauma, diffuse axonal injury and secondary axotomy result from a cascade of cellular alterations including cytoskeletal and mitochondrial disruption. We have examined the link between intracellular changes following mild/moderate axonal stretch injury and secondary axotomy in rat cortical neurons cultured to relative maturity (21 days in vitro). Axon bundles were transiently stretched to a strain level between 103% and 106% using controlled pressurized fluid. Double-immunohistochemical analysis of neurofilaments, neuronal spectrin, alpha-internexin, cytochrome-c, and ubiquitin was conducted at 24-, 48-, 72-, and 96-h postinjury. Stretch injury resulted in delayed cytoskeletal damage, maximal at 48-h postinjury. Accumulation of cytochrome-c and ubiquitin was also evident at 48 h following injury and colocalized to axonal regions of cytoskeletal disruption. Pretreatment of cultures with cyclosporin-A, an inhibitor of calcineurin and the mitochondrial membrane transitional pore, reduced the degree of cytoskeletal damage in stretch-injured axonal bundles. At 48-h postinjury, 20% of untreated cultures demonstrated secondary axotomy, whereas cyclosporin A-treated axon bundles remained intact. By 72-h postinjury, 50% of control preparations and 7% of cyclosporin A-treated axonal bundles had progressed to secondary axotomy, respectively. Statistical analyses demonstrated a significant (p < 0.05) reduction in secondary axotomy between treated and untreated cultures. In summary, these results suggest that cyclosporin-A reduces progressive cytoskeletal damage and secondary axotomy following transient axonal stretch injury in vitro.[Abstract] [Full Text] [Related] [New Search]