These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamic cell fractionation and transportation using moving dielectrophoresis. Author: Kua CH, Lam YC, Rodriguez I, Yang C, Youcef-Toumi K. Journal: Anal Chem; 2007 Sep 15; 79(18):6975-87. PubMed ID: 17702529. Abstract: This study presents a new cell manipulation method using a moving dielectrophoretic force to transport or fractionate cells along a microfluidic channel. The proposed moving dielectrophoresis (mDEP) is generated by sequentially energizing a single electrode or an array of electrodes to form an electric field that moves cells continuously along the microchannel. Cell fractionation is controlled by the applied electrical frequency, and cell transportation is controlled by the interelectrode activation time. The applicability of this method was demonstrated to simultaneously fractionate and transport Saccharomyces cerevisiae yeast cells, both viable and nonviable, by operating at conditions under which the cells were subjected to positive and negative dielectrophoresis, respectively. Compared to the conventional dielectrophoresis (cDEP and traveling wave dielectrophoresis (twDEP), moving dielectrophoresis allows cells to be separated on the basis of the real part of the Clausius-Mossotti factor, as in cDEP, but yet allows the direct transportation of separated cells without using fluid flow, as in twDEP. This dielectrophoresis technique provides a new way to manipulate cells and can be readily implemented on programmable multielectrode devices.[Abstract] [Full Text] [Related] [New Search]