These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fetuin-A gene expression, synthesis and release in primary human hepatocytes cultured in a galactosylated membrane bioreactor.
    Author: Memoli B, De Bartolo L, Favia P, Morelli S, Lopez LC, Procino A, Barbieri G, Curcio E, Giorno L, Esposito P, Cozzolino M, Brancaccio D, Andreucci VE, d'Agostino R, Drioli E.
    Journal: Biomaterials; 2007 Nov; 28(32):4836-44. PubMed ID: 17706279.
    Abstract:
    This paper reports on human hepatocytes cultured in a galactosylated membrane bioreactor in order to explore the modulation of the effects of a pro-inflammatory cytokine, Interleukin-6 (IL-6) on the liver cells at molecular level. In particular the role of IL-6 on gene expression and production of a glycoprotein, fetuin-A produced by hepatocytes, was investigated by culturing hepatocytes in the membrane bioreactor, both in the absence and presence of IL-6 (300 pg/ml). IL-6 modulated the fetuin-A gene expression, synthesis and release by primary human hepatocytes cultured in the bioreactor. A 75% IL-6-induced reduction of fetuin-A concentration in the medium was associated with a 60% increase of C-reactive protein in the same samples. Real-time-PCR demonstrated an 8-fold IL-6-induced reduction of fetuin-A gene expression. These results demonstrate that the hepatocyte galactosylated membrane bioreactor is a valuable tool to study IL-6 effects and gave evidence, for the first time, that IL-6 down-regulates the gene expression and synthesis of fetuin-A by primary human hepatocytes. The human hepatocyte bioreactor behaves like the in vivo liver, reproducing the same hepatic acute-phase response that occurs during the inflammatory process.
    [Abstract] [Full Text] [Related] [New Search]