These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Abnormalities in neuromuscular junction structure and skeletal muscle function in mice lacking the P2X2 nucleotide receptor.
    Author: Ryten M, Koshi R, Knight GE, Turmaine M, Dunn P, Cockayne DA, Ford AP, Burnstock G.
    Journal: Neuroscience; 2007 Sep 07; 148(3):700-11. PubMed ID: 17706883.
    Abstract:
    ATP is co-released in significant quantities with acetylcholine from motor neurons at skeletal neuromuscular junctions (NMJ). However, the role of this neurotransmitter in muscle function remains unclear. The P2X2 ion channel receptor subunit is expressed during development of the skeletal NMJ, but not in adult muscle fibers, although it is re-expressed during muscle fiber regeneration. Using mice deficient for the P2X2 receptor subunit for ATP (P2X2(-/-)), we demonstrate a role for purinergic signaling in NMJ development. Whereas control NMJs were characterized by precise apposition of pre-synaptic motor nerve terminals and post-synaptic junctional folds rich in acetylcholine receptors (AChRs), NMJs in P2X2(-/-) mice were disorganized: misapposition of nerve terminals and post-synaptic AChR expression localization was common; the density of post-synaptic junctional folds was reduced; and there was increased end-plate fragmentation. These changes in NMJ structure were associated with muscle fiber atrophy. In addition there was an increase in the proportion of fast type muscle fibers. These findings demonstrate a role for P2X2 receptor-mediated signaling in NMJ formation and suggest that purinergic signaling may play an as yet largely unrecognized part in synapse formation.
    [Abstract] [Full Text] [Related] [New Search]