These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation, taxonomic identification and hydrogen peroxide production by Lactobacillus delbrueckii subsp. lactis T31, isolated from Mongolian yoghurt: inhibitory activity on food-borne pathogens. Author: Batdorj B, Trinetta V, Dalgalarrondo M, Prévost H, Dousset X, Ivanova I, Haertlé T, Chobert JM. Journal: J Appl Microbiol; 2007 Sep; 103(3):584-93. PubMed ID: 17714391. Abstract: AIMS: The aim of this work was to isolate lactic acid bacteria (LAB) strains from Mongolian tarag (a traditionally homemade yoghurt) displaying antimicrobial activities against food-borne pathogens, identify inhibitory substances and study the kinetics of their production. METHODS AND RESULTS: Inhibitory substance-producing bacterial strains were isolated from tarag. From 300 bacterial clones, 31 were able to inhibit the growth of the indicator strain Lactobacillus bulgaricus 340. One of the most active strains was identified as Lactobacillus delbrueckii subsp. lactis strain T31 by using cluster analysis of amplified fragment length polymorphism (AFLP) DNA fingerprints. The antimicrobial substance was inactivated by catalase, demonstrating the production of hydrogen peroxide (H(2)O(2)). Production of H(2)O(2) was studied under aerated and nonaerated culture conditions. The amount of H(2)O(2) in the culture supernatant increased during bacterial growth and reached a maximum (5.12 mmol l(-1)) at the early stationary phase under aerated conditions (agitated cultures). H(2)O(2) was not detected in the culture performed without agitation. In mixed cultures performed in milk with either Lact. delbrueckii subsp. lactis T31 in the presence of Escherichia coli, or Lact. delbrueckii subsp. lactis T31 in the presence of Listeria innocua under aerated and nonaerated conditions, a significant decrease in pathogen count was observed in aerated cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: The significant decrease in Listeria viability observed in aerated mixed cultures of Lact. delbrueckii subsp. lactis T31 is mainly because of H(2)O(2) production. Lactobacillus delbrueckii subsp. lactis T31 could be used as a protective culture in food industries or as a probiotic to prevent intestinal and urogenital infections.[Abstract] [Full Text] [Related] [New Search]