These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Granulocyte-colony stimulating factor enhances muscle proliferation and strength following skeletal muscle injury in rats.
    Author: Stratos I, Rotter R, Eipel C, Mittlmeier T, Vollmar B.
    Journal: J Appl Physiol (1985); 2007 Nov; 103(5):1857-63. PubMed ID: 17717125.
    Abstract:
    Insufficiency of skeletal muscle regeneration often impedes the healing process with functional deficiencies and scar formation. We tested the hematopoietic growth factor granulocyte-colony stimulating factor (G-CSF) with respect to its efficacy to improve functional muscle regeneration following skeletal muscle injury in Wistar rats. After crush injury to the left soleus muscle, animals received daily G-CSF (20 mug/kg ip) or vehicle solution (n = 30 per group each). Sham-operated animals without muscle injury served as controls (n = 15). After in vivo assessment of the fast-twitch and tetanic contraction capacity of the soleus muscles at days 4, 7, and 14 post-injury, sampling of muscle tissue served for analysis of satellite cell proliferation [bromodeoxyuridine (BrdU)/laminin and BrdU/desmin double immunohistochemistry] and cell apoptosis (transferase nick-end labeling analysis). Muscle strength analysis revealed recovery of contraction forces to 26 +/- 2, 35 +/- 3, and 53 +/- 3% (twitch force) and to 20 +/- 3, 24 +/- 2, and 37 +/- 2% (tetanic force) within the 14-day observation period in vehicle-treated animals. In contrast, G-CSF increased contractile forces with markedly higher values at day 7 (twitch force: 42 +/- 2%; tetanic force: 34 +/- 2%) and day 14 (twitch force: 62 +/- 3%; tetanic force: 43 +/- 3%). This enhancement of muscle function was preceded by a significant increase of satellite cell proliferation (BrdU-positive cells/mm(2): 27 +/- 6 vs. vehicle: 12 +/- 3) and a moderate decrease of cell apoptosis (transferase nick-end labeling-positive cells/mm(2): 11 +/- 2 vs. vehicle: 16 +/- 3) at day 4. In conclusion, G-CSF histologically promoted viability and proliferation of muscle cells and functionally enhanced recovery of muscle strength. Thus G-CSF might represent a therapeutic option to optimize the posttraumatic course of muscle tissue healing.
    [Abstract] [Full Text] [Related] [New Search]