These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The membrane-proximal fusion domain of HIV-1 GP41 reveals sequence-specific and fine-tuning mechanism of membrane binding. Author: Efremov RG, Volynsky PE, Nolde DE, Vergoten G, Arseniev AS. Journal: J Biomol Struct Dyn; 2007 Oct; 25(2):195-205. PubMed ID: 17718599. Abstract: The membrane interface-partitioning region preceding the transmembrane anchor of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope protein is one of the sites responsible for virus binding to its host cell membrane and subsequent fusion events. Here, we used molecular modeling techniques to assess membrane interactions, structure, and hydrophobic properties of the fusion-active peptide representing this region, several of its homologs from different HIV-1 strains, as well as a peptide - defective gp41 phenotype - unable to mediate cell-cell fusion and virus entry. It is shown that the wild-type peptides bind to the water-membrane interface in alpha-helical conformation, while the mutant adopts partly destabilized helix-break-helix structure on the membrane surface. The wild-type peptides reveal specific "tilted oblique-oriented" pattern of hydrophobicity on their surfaces - the property specific for fusion regions of other viruses. Fusion peptides penetrate into the membrane with their N-termini and reveal "fine-tuning" interactions with membrane and water environments: the shift of this balance (e.g., due to point mutations) may dramatically change the mode of membrane binding, and therefore, may cause loss of fusion activity. The modeling results agree well with experimental data and provide a strategy to delineate fusogenic regions in amino acid sequences of viral proteins.[Abstract] [Full Text] [Related] [New Search]