These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid.
    Author: Behera S, Raj CR.
    Journal: Biosens Bioelectron; 2007 Nov 30; 23(4):556-61. PubMed ID: 17719217.
    Abstract:
    Electrochemistry of microperoxidase-11 (MPx-11) anchored on the mixed self-assembled monolayer (SAM) of 2-(2-mercaptoethylpyrazine) (PET) and 4,4'-dithiodibutyric acid (DTB) on gold (Au) electrode and the biosensing of uric acid (UA) is described. MPx-11 has been covalently anchored on the mixed SAM of PET and DTB on Au electrode. MPx-11 on the mixed self-assembly exhibits reversible redox response characteristic of a surface confined species. The heterocyclic ring of PET promotes the electron transfer between the electrode and the redox protein. The apparent standard rate constant kapps obtained for the redox reaction of MPx-11 on the mixed monolayer is approximately 2.15 times higher than that on the single monolayer of DTB modified electrode. MPx-11 efficiently mediates the electrocatalytic reduction of H2O2. MPx-11 electrode is highly sensitive to H2O2 and it shows linear response for a wide concentration range. The electrocatalytic activity of the MPx-11 electrode is combined with the enzymatic activity of uricase (UOx) to fabricate uric acid biosensor. The bienzyme assembly is highly sensitive towards UA and it could detect UA as low as 2 microM at the potential of -0.1 V. The biosensor shows linear response with a sensitivity of 3.4+/-0.08 nA cm(-2) microM(-1). Ascorbate (AA) and paracetamol (PA) do not significantly interfere in the amperometric sensing of UA.
    [Abstract] [Full Text] [Related] [New Search]