These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Speeding the recovery from ultraslow inactivation of voltage-gated Na+ channels by metal ion binding to the selectivity filter: a foot-on-the-door? Author: Szendroedi J, Sandtner W, Zarrabi T, Zebedin E, Hilber K, Dudley SC, Fozzard HA, Todt H. Journal: Biophys J; 2007 Dec 15; 93(12):4209-24. PubMed ID: 17720727. Abstract: Slow inactivated states in voltage-gated ion channels can be modulated by binding molecules both to the outside and to the inside of the pore. Thus, external K(+) inhibits C-type inactivation in Shaker K(+) channels by a "foot-in-the-door" mechanism. Here, we explore the modulation of a very long-lived inactivated state, ultraslow inactivation (I(US)), by ligand binding to the outer vestibule in voltage-gated Na(+) channels. Blocking the outer vestibule by a mutant mu-conotoxin GIIIA substantially accelerated recovery from I(US). A similar effect was observed if Cd(2+) was bound to a cysteine engineered to the selectivity filter (K1237C). In K1237C channels, exposed to 30 microM Cd(2+), the time constant of recovery from I(US) was decreased from 145.0 +/- 10.2 s to 32.5 +/- 3.3 s (P < 0.001). Recovery from I(US) was only accelerated if Cd(2+) was added to the bath solution during recovery (V = -120 mV) from I(US), but not when the channels were selectively exposed to Cd(2+) during the development of I(US) (-20 mV). These data could be explained by a kinetic model in which Cd(2+) binds with high affinity to a slow inactivated state (I(S)), which is transiently occupied during recovery from I(US). A total of 50 microM Cd(2+) produced an approximately 8 mV hyperpolarizing shift of the steady-state inactivation curve of I(S), supporting this kinetic model. Binding of lidocaine to the internal vestibule significantly reduced the number of channels entering I(US), suggesting that I(US) is associated with a conformational change of the internal vestibule of the channel. We propose a molecular model in which slow inactivation (I(S)) occurs by a closure of the outer vestibule, whereas I(US) arises from a constriction of the internal vestibule produced by a widening of the selectivity filter region. Binding of Cd(2+) to C1237 promotes the closure of the selectivity filter region, thereby hastening recovery from I(US). Thus, Cd(2+) ions may act like a foot-on-the-door, kicking the I(S) gate to close.[Abstract] [Full Text] [Related] [New Search]