These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Missense and nonsense mutations in the alternatively-spliced exon 2 of COL2A1 cause the ocular variant of Stickler syndrome.
    Author: McAlinden A, Majava M, Bishop PN, Perveen R, Black GC, Pierpont ME, Ala-Kokko L, Männikkö M.
    Journal: Hum Mutat; 2008 Jan; 29(1):83-90. PubMed ID: 17721977.
    Abstract:
    Stickler syndrome type I (STL1) is a phenotypically heterogeneous disorder characterized by ocular and extraocular features. It is caused by null-allele mutations in the COL2A1 gene that codes for procollagen II. COL2A1 precursor mRNA undergoes alternative splicing, resulting in two isoforms, a long form including exon 2 (type IIA isoform) and a short form excluding exon 2 (type IIB isoform). The short form is predominantly expressed by differentiated chondrocytes in adult cartilage, and the long form in chondroprogenitor cells during early development and in the vitreous of the eye, which is the only adult tissue containing procollagen IIA. Recent evidence indicates that due to the tissue-specific expression of these two isoforms, premature termination codon mutations in exon 2 cause Stickler syndrome with minimal or no extraocular manifestations. We describe here two mutations in exon 2 of COL2A1 in three patients with predominantly ocular Stickler syndrome: Cys64Stop in two patients, and a novel structural mutation, Cys57Tyr, in one patient. RT-PCR of total lymphoblast RNA from one patient with the Cys64Stop mutation revealed that only the normal allele of the IIA form was present, indicating that the mutation resulted either in complete loss of the allele by nonsense-mediated mRNA decay or by skipping of exon 2 via nonsense-mediated altered splicing, resulting in production of the type IIB isoform. The results of COL2A1 minigene expression studies suggest that both Cys64Stop and Cys57Tyr alter positive cis regulatory elements for splicing, resulting in a lower IIA:IIB ratio.
    [Abstract] [Full Text] [Related] [New Search]