These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Axogenic effect of estrogen in male rat hypothalamic neurons involves Ca(2+), protein kinase C, and extracellular signal-regulated kinase signaling. Author: Gorosito SV, Cambiasso MJ. Journal: J Neurosci Res; 2008 Jan; 86(1):145-57. PubMed ID: 17722067. Abstract: 17-beta-Estradiol (E2) stimulates the growth of axons in male-derived hypothalamic neurons in vitro. This effect is not exerted through the classical intracellular estrogen receptor (ER) but depends on a membrane mechanism involving TrkB. In the present study, we investigate the intracellular signaling cascade that mediates the axogenic effect of E2. Treatment with an intracellular Ca(2+) chelator, a Ca(2+)-dependent protein kinase C (PKC) inhibitor, or two specific inhibitors of extracellular signal-regulated kinases (ERK) mitogen-activated protein kinases (MAPK) completely inhibited the E2-induced axogenesis. E2 and the membrane-impermeant construct E2BSA rapidly induced phosphorylation of ERK, which was blocked by the specific inhibitor of the ERK pathway UO126 but not by the ER antagonist ICI 182,780. Decrease of intracellular free Ca(2+) or disruption of PKC activation by Ro 32-0432 attenuated ERK activation, indicating the confluence of signals in the MAPK pathway. Subcellular analysis of ERK demonstrated that the phospho-ERK signal is augmented in the nucleus after 15 min of E2 stimulation. We have also shown that E2 increased phosphorylation of CREB via ERK signaling. In summary, this study demonstrates that E2, probably via a membrane-associated receptor, induces axonal growth by activating CREB phosphorylation through ERK signaling by a mechanism involving Ca(2+) and PKC activation.[Abstract] [Full Text] [Related] [New Search]