These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of partial blockade of the Na(+)/Ca(2+)-exchanger on Ca(2+) handling in isolated rat ventricular myocytes. Author: Acsai K, Kun A, Farkas AS, Fülöp F, Nagy N, Balázs M, Szentandrássy N, Nánási PP, Papp JG, Varró A, Tóth A. Journal: Eur J Pharmacol; 2007 Dec 08; 576(1-3):1-6. PubMed ID: 17727839. Abstract: SEA0400 is a selective inhibitor of the Na(+)/Ca(2+) exchanger having equal potencies to suppress both the forward and reverse mode operation of the Na(+)/Ca(2+) exchanger. Present experiments were designed to study the effect of partial blockade of Na(+)/Ca(2+) exchanger on Ca(2+) handling in isolated rat ventricular myocytes. Intracellular Ca(2+) transient and cell shortening were measured in ventricular myocytes loaded with Fura-2-AM fluorescent dye. Partial blockade of Na(+)/Ca(2+) exchanger was induced by superfusion of the cells with SEA0400 at a concentration of 0.3 microM. Amplitude of the intracellular Ca(2+) transient and cell shortening was significantly increased by SEA0400 in both field stimulated and voltage clamped myocytes, without significant elevation of diastolic Ca(2+) level and the decay time constant of the Ca(2+) transient. In patch clamped myocytes the SEA0400 induced increase in the Ca(2+) transient and cell shortening was accompanied by significant reduction of peak L-type Ca(2+) current. These effects can be explained by the autoregulative nature of cardiac Ca(2+) handling, as the reduced Ca(2+) efflux from the cell results in an increased Ca(2+) load to the sarcoplasmic reticulum leading to increased Ca(2+) release, which in turn may decrease the L-type Ca(2+) current by accelaration of Ca(2+) dependent inactivation of L-type Ca(2+) current. Our results suggest that complex changes in the Ca(2+) cycling can occur after selective pharmacological inhibition of the Na(+)/Ca(2+) exchanger.[Abstract] [Full Text] [Related] [New Search]