These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design and fabrication of multichannel cochlear implants for animal research. Author: Rebscher SJ, Hetherington AM, Snyder RL, Leake PA, Bonham BH. Journal: J Neurosci Methods; 2007 Oct 15; 166(1):1-12. PubMed ID: 17727956. Abstract: The effectiveness of multichannel cochlear implants depends on the activation of perceptually distinct regions of the auditory nerve. Increased information transfer is possible as the number of channels and dynamic range are increased and electrical and neural interaction among channels is reduced. Human and animal studies have demonstrated that specific design features of the intracochlear electrode directly affect these performance factors. These features include the geometry, size, and orientation of the stimulating sites, proximity of the device to spiral ganglion neurons, shape and position of the insulating carrier, and the stimulation mode (monopolar, bipolar, etc.). Animal studies to directly measure the effects of changes in electrode design are currently constrained by the lack of available electrodes that model contemporary clinical devices. This report presents methods to design and fabricate species-specific customizable electrode arrays. We have successfully implanted these arrays in guinea pigs and cats for periods of up to 14 months and have conducted acute electrophysiological experiments in these animals. Modifications enabling long-term intracochlear drug infusion are also described. Studies using these scale model arrays will improve our understanding of how these devices function in human subjects and how we can best optimize future cochlear implants.[Abstract] [Full Text] [Related] [New Search]