These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gender-dependent role of endogenous somatostatin in regulating growth hormone-axis function in mice.
    Author: Luque RM, Kineman RD.
    Journal: Endocrinology; 2007 Dec; 148(12):5998-6006. PubMed ID: 17761762.
    Abstract:
    It has been previously reported that male and female somatostatin (SST) knockout mice (Sst-/-) release more GH, compared with Sst+/+ mice, due to enhanced GH-secretory vesicle release. Endogenous SST may also regulate GH secretion by directly inhibiting GHRH-stimulated GH gene expression and/or by modulating hypothalamic GHRH input. To begin to explore these possibilities and to learn more about the gender-dependent role of SST in modulating GH-axis function, hypothalamic, pituitary, and liver components of the GH-axis were compared in male and female Sst+/+ and Sst-/- mice. Pituitary mRNA levels for GH and receptors for GHRH and ghrelin were increased in female Sst-/- mice, compared with Sst+/+ controls, and these changes were reflected by an increase in circulating GH and IGF-I. Elevated levels of IGF-I in female Sst-/- mice were associated with elevated hepatic mRNA levels for IGF-I, as well as for GH and prolactin receptors. Consistent with the role of GH/IGF-I in negative feedback regulation of hypothalamic function, GHRH mRNA levels were reduced in female Sst-/- mice, whereas cortistatin (CST) mRNA levels were unaltered. In contrast to the widespread impact of SST loss on GH-axis function in females, only circulating GH, hypothalamic CST, and hepatic prolactin receptor expression were up-regulated in Sst-/- male mice, compared with Sst+/+ controls. These results confirm and extend the sexually dimorphic role of SST on GH-axis regulation, and suggest that CST, a neuropeptide that acts through SST receptors to inhibit GH secretion, may serve a compensatory role in maintaining GH-axis function in Sst-/- male mice.
    [Abstract] [Full Text] [Related] [New Search]