These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Upregulation of AT1 receptor gene on activation of protein kinase Cbeta/nicotinamide adenine dinucleotide diphosphate oxidase/ERK1/2/c-fos signaling cascade mediates long-term pressor effect of angiotensin II in rostral ventrolateral medulla. Author: Chan SH, Wang LL, Tseng HL, Chan JY. Journal: J Hypertens; 2007 Sep; 25(9):1845-61. PubMed ID: 17762649. Abstract: OBJECTIVE: Angiotensin II induces the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) 1/2 via the activation of nicotinamide adenine dinucleotide diphosphate (NADPH) oxidase on stimulation of the angiotensin subtype 1 receptor (AT1R) in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for the maintenance of vasomotor tone and blood pressure are located. Angiotensin II-activated p38 MAPK in RVLM promotes a short-term pressor effect via augmented glutamatergic neurotransmission. We tested the hypothesis that the NADPH oxidase-dependent phosphorylation of ERK1/2 after the activation of conventional protein kinase C (PKC) mediates the AT1R-dependent long-term pressor effects of angiotensin II via transcriptional induction of the proto-oncogene c-fos gene in RVLM. METHODS AND RESULTS: In Sprague-Dawley rats, a microinjection of angiotensin II bilaterally into the RVLM induced membrane-bound translocation of the conventional PKCalpha, PKCbeta or PKCgamma isoform, phosphorylation of the p47 subunit of NADPH oxidase and ERK1/2, followed by phosphorylation of the transcription factor cyclic adenosine monophosphate response element binding protein (CREB), and c-fos induction. The PKC inhibitor antagonized angiotensin II-induced p47 phosphorylation, and an antisense oligonucleotide (ASON) complementary to PKCbeta messenger RNA suppressed angiotensin II-induced ERK1/2 activation, phosphorylation or DNA binding activity of CREB, and upregulation of c-fos mRNA expression in the ventrolateral medulla. Furthermore, a microinjection of ERK1/2, CREB or c-fos ASON into the RVLM significantly reduced the long-term pressor effect and augmented AT1R expression in the ventrolateral medulla induced by intracerebroventricular infusion of angiotensin II. CONCLUSION: We concluded that the PKCbeta/NADPH oxidase/ERK1/2/CREB/c-fos cascade represents a novel signaling cascade that mediates the long-term pressor effect induced by angiotensin II in the RVLM.[Abstract] [Full Text] [Related] [New Search]