These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adenosine and TNF-alpha exert similar inotropic effect on heart cultures, suggesting a cardioprotective mechanism against hypoxia. Author: El-Ani D, Zimlichman R, Mashiach Y, Shainberg A. Journal: Life Sci; 2007 Aug 16; 81(10):803-13. PubMed ID: 17764703. Abstract: When cardiomyocytes were subjected to hypoxia, tumor necrosis factor-alpha (TNF-alpha; 3-50 ng/ml) or adenosine (1-100 microM), decreased hypoxic damage as was detected by lactate dehydrogenase (LDH) release, MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) absorbance, ROS (reactive oxygen species) measurement or desmin immunostaining. This cardioprotection was not prevented in TNF-alpha-treated cultures by 5-hydroxydecanoic acid (5-HD). Our aim was to elucidate whether adenosine and TNF-alpha mediate a similar protective mechanism against hypoxia in primary heart cultures and in H9c2 cardiomyocytes. Adenosine and TNF-alpha are known for their negative inotropic effects on the heart. We have suggested that deoxyglucose uptake reflects heart contractility in cell cultures; therefore, we assayed its accumulation under various conditions. Treatment for 20 min with adenosine, R-PIA [(-)-N(6)-phenylisopropyladenosine] (10 microM), or TNF-alpha reduced (3)H-deoxyglucose uptake in primary heart cultures and also in H9c2 cardiomyocytes by 30-50%. Isoproterenol accelerated (3)H-deoxyglucose uptake by 50%. Adenosine, R-PIA, or TNF-alpha attenuated the stimulatory effect of isoproterenol on (3)H-deoxyglucose uptake to control levels. Hypoxia reduced (3)H-deoxyglucose uptake by 50%, as in the treatment of the hypoxic cultures with TNF-alpha or adenosine. Glibenclamide (2 microM), 5-HD (300 microM), or diazoxide (50 microM) increased (3)H-deoxyglucose uptake by 50-80%. Adenosine (100 microM) and TNF-alpha (50 ng/ml) stimulated (86)Rb efflux. Glibenclamide attenuated this effect. We demonstrate that TNF-alpha, like adenosine, accelerated Ca(2+) uptake into the sarcoplasmic reticulum (SR) by 50-100% and therefore prevented cardiomyocyte Ca(2+) overload. Our findings further suggest that TNF-alpha, as well as adenosine, may mediate an adaptive effect in the heart by preventing Ca(2+) overload via activation of SR Ca-ATPase (SERCA(2)a).[Abstract] [Full Text] [Related] [New Search]