These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An in vitro microdialysis methodology to study 11beta-hydroxysteroid dehydrogenase type 1 enzyme activity in liver microsomes.
    Author: Sun L, Stenken JA, Yang AY, Zhao JJ, Musson DG.
    Journal: Anal Biochem; 2007 Nov 01; 370(1):26-37. PubMed ID: 17765862.
    Abstract:
    Microdialysis sampling coupled with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS) was used to observe in vitro 11beta-hydroxysteroid dehydrogenase type 1 (HSD1) enzyme-catalyzed conversion of stable-isotope-labeled cortisone to cortisol in liver microsomes from dog, monkey, and human. Experimental conditions that would affect the microdialysis sampling approach including probe length, perfusion fluid flow rate, extraction efficiency (E(d)), substrate concentration, and enzyme reaction conditions were evaluated. Dialysates containing high salt concentrations (>150 mM) were directly assayed using LC/MS/MS without additional sample cleanup. The sensitivity (with lower level of quantitation at 0.1 ng/mL) and selectivity of this assay allowed detection of the enzyme reactants at physiologically relevant levels. The interconversion from M+4 cortisone to M+4 cortisol was detected in dog, human, and monkey liver microsomes. Results show species-specific reaction profiles, with a five times higher conversion rate in dog liver microsomes than in human and monkey liver microsomes. Based on M+4 cortisol production rate obtained using a microdialysis infusion of M+4 cortisone to the microsomes coincubated with a proprietary 11beta-HSD1 inhibitor of different concentrations, the degrees of enzyme inhibition were found to be 40 and 85%, consistent with values obtained by a traditional in vitro incubation method. The microdialysis sampling methodology with LC/MS/MS provided extensive information about 11beta-HSD1 activities in microsomes from different mammalian species.
    [Abstract] [Full Text] [Related] [New Search]