These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A partially aromatic urethane dimethacrylate as a new substitute for Bis-GMA in restorative composites.
    Author: Moszner N, Fischer UK, Angermann J, Rheinberger V.
    Journal: Dent Mater; 2008 May; 24(5):694-9. PubMed ID: 17767952.
    Abstract:
    OBJECTIVES: The objective of this study was to investigate the use of a new, partially aromatic urethane dimethacrylate in visible-light cured resin-based composite restoratives. Selected mechanical properties, such as flexural strength and flexural modulus of elasticity, of model monomer mixtures and composites containing the new urethane dimethacrylate were investigated and compared to the properties of materials that are based on Bis-GMA, at present the most frequently used cross-linker in restorative composites. In addition, the polymerization shrinkage and the water sorption of selected composites were determined. METHODS: The flexural strength, flexural modulus of elasticity, and the water sorption were determined according to ISO 4049:2000. Test specimens (rods: 2 mmx2 mmx25 mm; discs: d=15 mm and h=1 mm) of the investigated composites were prepared in stainless steel molds and light-cured (150 mW/cm2, 2x180 s). The flexural strength and flexural modulus of rods were measured after the samples had been stored under dry conditions or in water for 24 h at 37 degrees C as well as after they had been stored in water for 7 days at 37 degrees C. The water sorption was determined with discs. The polymerization shrinkage was calculated from the densities of the uncured composite pastes and cured composites. RESULTS: Visible light cured mixtures of dimethacrylate diluents with the new urethane dimethacrylate and composites based on these mixtures show a reactivity, flexural strength, flexural modulus of elasticity, polymerization shrinkage and water sorption similar to those of materials that are based on Bis-GMA. The composites did not show any strong deterioration of the mechanical properties after water storage.
    [Abstract] [Full Text] [Related] [New Search]