These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding.
    Author: Belevich I, Borisov VB, Bloch DA, Konstantinov AA, Verkhovsky MI.
    Journal: Biochemistry; 2007 Oct 02; 46(39):11177-84. PubMed ID: 17784736.
    Abstract:
    Cytochrome bd from Azotobacter vinelandii is a respiratory quinol oxidase that is highly efficient in reducing intracellular oxygen concentration, thus enabling nitrogen fixation under ambient aerobic conditions. Equilibrium measurements of O2 binding to ferrous heme d in the one-electron-reduced form of the A. vinelandii enzyme give Kd(O2) = 0.5 microM, close to the value for the Escherichia coli cytochrome bd (ca. 0.3 microM); thus, both enzymes have similar, high affinity for oxygen. The reaction of the A. vinelandii cytochrome bd in the one-electron-reduced and fully reduced states with O2 is extremely fast approaching the diffusion-controlled limit in water. In the fully reduced state, the rate of O2 binding depends linearly on the oxygen concentration consistently with a simple, single-step process. In contrast, in the one-electron-reduced state the rate of oxygen binding is hyperbolic, implying a more complex binding pattern. Two possible explanations for the saturation kinetics are considered: (A) There is a spectroscopically silent prebinding of oxygen to an unidentified low-affinity saturatable site followed by the oxygen transfer to heme d. (B) Oxygen binding to heme d requires an "activated" state of the enzyme in which an oxygen channel connecting heme d to the bulk is open. This channel is permanently open in the fully reduced enzyme (hence no saturation behavior) but flickers between the open and closed states in the one-electron-reduced enzyme.
    [Abstract] [Full Text] [Related] [New Search]