These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of Fatty Acid Synthase (FASN) synergistically enhances the efficacy of 5-fluorouracil in breast carcinoma cells. Author: Vazquez-Martin A, Ropero S, Brunet J, Colomer R, Menendez JA. Journal: Oncol Rep; 2007 Oct; 18(4):973-80. PubMed ID: 17786362. Abstract: The lipogenic enzyme fatty acid synthase (FASN) is differentially overexpressed and hyperactivated in a biologically aggressive subset of breast carcinomas and minimally in most normal adult tissues, rendering it an interesting target for anti-neoplastic therapy development. We previously reported that the FASN blockade can induce a synergistic chemosensitization of breast cancer cells to microtubule interfering agents (MIAs) such as docetaxel, paclitaxel and vinorelbine. Upon pharmacological inhibition of FASN activity using the natural antibiotic cerulenin [(2S,3R)-2,3-epoxy-4-oxo-7E,10E-dodecadienamide], we evaluated the role of FASN-catalyzed endogenous fatty acid biogenesis on the sensitivity of SK-Br3, MCF-7 and MDA-MB-231 breast cancer cell lines to the anti-metabolite 5-fluorouracil (5-FU). Cells were exposed simultaneously to cerulenin and 5-FU, sequentially to 5-FU followed by cerulenin or cerulenin followed by 5-FU. Cell viability was determined by MTT assays and the increase in 5-FU-induced cell growth inhibition was measured by dividing 5-FU IC30 and IC50 values (i.e., 30% and 50% inhibitory concentrations, respectively) that were obtained in the absence of cerulenin by those in its presence. Co-exposure to cerulenin enhanced 5-FU efficacy up to 20-, 81-, and 58-times in SK-Br3, MCF-7 and MDA-MB-231 cells, respectively. Pre-treatment with cerulenin followed by the addition of 5-FU increased 5-FU efficacy up to 31-, 87-, and 126-times in SK-Br3, MCF-7 and MDA-MB-231 cells, respectively. Pre-treatment with 5-FU followed by the addition of cerulenin augmented 5-FU efficacy up to 107-, 20-, and 18-times in SK-Br3, MCF-7 and MDA-MB-231 cells, respectively. When isobologram transformations of multiple dose-response analyses were performed to detect in vitro synergy, we concluded that the nature of the interaction between cerulenin and 5-FU in individual breast cancer cells lines generally exhibited sequence-dependency. Thus, while synergism was mainly observed when breast cancer cells were exposed to 5-FU prior to cerulenin, moderate synergism or additive interactions was obtained either when the chemical FASN blocker preceded 5-FU or when both drugs were concurrently administered. Of note, no antagonist interactions occurred upon any schedule of combined treatment with cerulenin and 5-FU. Our current findings revealing a schedule-dependent synergistic interaction between 5-FU and cerulenin represents, to the best of our knowledge, the first evidence that FASN-catalyzed de novo FA biogenesis plays a key role in regulating breast cancer cell response to antimetabolite-based therapies.[Abstract] [Full Text] [Related] [New Search]