These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of dehydroepiandrosterone on insulin sensitivity in Otsuka Long-Evans Tokushima-fatty rats.
    Author: Ishizuka T, Miura A, Kajita K, Matsumoto M, Sugiyama C, Matsubara K, Ikeda T, Mori I, Morita H, Uno Y, Mune T, Kanoh Y, Ishizawa M.
    Journal: Acta Diabetol; 2007 Dec; 44(4):219-26. PubMed ID: 17823764.
    Abstract:
    In order to clarify the effect of dehydroepiandrosterone (DHEA) on improvement of insulin resistance, we examined the effects of overexpression of wild-type protein kinase C-zeta (wt-PKCzeta)/3-phosphoinositide-dependent protein kinase-1 (wt-PDK1) and kinase-inactive PKCzeta/PDK1 (DeltaPKCzeta/DeltaPDK1) on DHEA-induced [(3)H]2-deoxyglucose (DOG) uptake using the electroporation method in rat adipocytes. Overexpression of wt-PKCzeta and wt-PDK1 significantly increased in DHEA-induced [(3)H]2-DOG uptake. Wortmannin completely suppressed DHEA-induced [(3)H]2-DOG uptake in wt-PKCzeta- and wt-PDK1-transfected adipocytes. Overexpression of neither DeltaPKCzeta nor DeltaPDK1 increased DHEA-induced [(3)H]2-DOG uptake. Otsuka Long-Evans fatty rats (OLETF), animal models of type 2 diabetes, and Long-Evans Tokushima rats (LETO) as control, were treated with 0.4% DHEA for 2 weeks. Insulin-induced [(3)H]2-DOG uptakes, activations of PI 3-kinase and PKCzeta of adipocytes were significantly increased in DHEA-treated OLETF rats. Moreover, plasma glucose levels in OLETF rats after treatment with DHEA for 2 weeks were significantly lower than treatment without DHEA, but not in LETO rats. These results indicate that DHEA treatment may improve glucose tolerance through a PI 3-kinase-PKCzeta pathway and downregulates adiposity in OLETF rats.
    [Abstract] [Full Text] [Related] [New Search]