These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Silane-modified magnetic beads: application to immunoglobulin G separation. Author: Oztürk N, Günay ME, Akgöl S, Denizli A. Journal: Biotechnol Prog; 2007; 23(5):1149-56. PubMed ID: 17824616. Abstract: The magnetic poly(2-hydroxyethyl methacrylate ethylene glycol dimethacrylate) [m-poly(HEMA-EGDMA)] beads (150-250-microm diameter in spherical form) were prepared by a radical suspension polymerization technique. The pseudo-specific ligand, reactive imidazole containing 3-(2-imidazoline-1-yl)propyl (triethoxysilane) (IMEO) was selected as a silanization agent. IMEO was covalently immobilized onto the magnetic beads. IMEO-immobilized m-poly(HEMA-EGDMA) beads were used for the affinity adsorption of immunoglobulin-G (IgG) from aqueous solutions and human plasma. To evaluate the degree of IMEO attachment, the m-poly(HEMA-EGDMA) beads were subjected to Si analysis by using flame atomizer atomic absorption spectrometer, and it was estimated as 36.6 mg IMEO/g of polymer. The nonspecific IgG adsorption onto the plain m-poly(HEMA-EGDMA) beads was very low (about 0.4 mg/g). Higher adsorption values (up to 55 mg/g) were obtained when the m-poly(HEMA-EGDMA)/IMEO beads were used from both aqueous solutions and human plasma. The maximum IgG adsorption on the m-poly(HEMA-EGDMA)-IMEO beads was observed at pH 7.0. The IgG molecules could be repeatedly adsorbed and desorbed with m-poly(HEMA-EGDMA)-IMEO beads without noticeable loss in the IgG adsorption capacity. The adsorption capacity from human plasma in magnetically stabilized fluidized bed decreased drastically from 78.9 to 19.6 mg/g with the increase of the flow rate from 0.2 to 3.5 mL/min.[Abstract] [Full Text] [Related] [New Search]