These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A 12-week, prospective, open-label analysis of the effect of rosuvastatin on triglyceride-rich lipoprotein metabolism in patients with primary dyslipidemia.
    Author: Kostapanos MS, Milionis HJ, Filippatos TD, Nakou ES, Bairaktari ET, Tselepis AD, Elisaf MS.
    Journal: Clin Ther; 2007 Jul; 29(7):1403-14. PubMed ID: 17825691.
    Abstract:
    BACKGROUND: Although the effect of statins on lowering low-density lipoprotein cholesterol (LDL-C) has been extensively studied, their hypotriglyceridemic capacity is not fully understood. OBJECTIVE: The present study examined clinical and laboratory factors potentially associated with the triglyceride (TG)-lowering effect of rosuvastatin. METHODS: Eligible patients had primary dyslipidemia and a moderate risk of heart disease. Patients were prescribed rosuvastatin 10 mg/d in an open-label fashion and kept 3-day food diaries. Laboratory measurements, performed at baseline and 12 weeks, included serum lipid parameters (total cholesterol [TC], TGs, LDL-C, high-density lipoprotein cholesterol [HDL-C], and apolipoprotein [apo] levels), non-lipid metabolic variables (including carbohydrate metabolism parameters and renal, liver, and thyroid function tests), and LDL-subfraction profile (by high-resolution 3% polyacrylamide gel electrophoresis). Tolerability was assessed at each visit. RESULTS: Participants were 75 hyperlipidemic patients (39 men and 36 women; mean age, 51.7 years). At 12 weeks, TC levels were reduced by 35.1% (P < 0.001), TGs by 15.2% (P < 0.001), LDL-C by 48.5% (P < 0.001), apoE by 35.4% (P < 0.001), and apoE by 17.3% (P < 0.001) from baseline, whereas HDL-C and apoA1 levels were not significantly changed. Stepwise linear regression analysis showed that baseline TG levels were most significantly correlated (R(2) = 42.0%; P < 0.001) with the TG-lowering effect of rosuvastatin, followed by the reduction in apoCIII levels (R(2) = 13.6%; P < 0.01). Rosuvastatin use was associated with a reduction in cholesterol mass of both large LDL particles (mean [SD], from 150.5 [36.6] to 90.5 [24.3] mg/dL; P < 0.001) and small, dense LDL (sdLDL) particles (from 11.5 [8.4] to 6.6 [4.5] mg/dL; P < 0.001). Rosuvastatin had no effect on cholesterol distribution of the LDL subfractions (mean [SD], large particles, from 90.8% [7.0%] to 91.8% [5.1%]; sdLDL, from 7.1% [4.7%] to 7.5% [4.8%]) or the mean LDL particle size (from 26.5 [4.2] to 26.6 [4.0] rim). A significant increase in mean LDL particle size after rosuvastatin treatment (mean [SD], from 26.4 [0.4] to 26.9 [0.4] rim; P = 0.02) was observed only in patients with baseline TG levels > or =120 mg/dL. No serious adverse events requiring study treatment discontinuation were reported. One patient who presented with headache and 2 patients who presented with fatigue quickly recovered without discontinuing rosuvastatin treatment. A posttreatment elevation in aminotransferase levels <3-fold the upper limit of normal (ULN) was recorded in 5 (6.7%) patients, and 2 (2.7%) patients experienced elevated creatine kinase concentrations <5-fold ULN. CONCLUSION: Baseline TG levels were the most important independent variable associated with the TG-lowering effect of rosuvastatin.
    [Abstract] [Full Text] [Related] [New Search]