These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insights into the nature of the hydrogen bonding of *Tyr272 in apo-galactose oxidase. Author: Benisvy L, Hammond D, Parker DJ, Davies ES, Garner CD, McMaster J, Wilson C, Neese F, Bothe E, Bittl R, Teutloff C. Journal: J Inorg Biochem; 2007 Nov; 101(11-12):1859-64. PubMed ID: 17826837. Abstract: The synthesis and structure of an o-methylthio-phenol-imidazole, 2-(2'-(4'-tert-butyl-6'-methylsulfanyl)-hydroxyphenyl))-4,5-diphenyl-imidazole ((MeS)LH), is reported; X-ray crystallographic studies have shown that (MeS)LH involves an O-H...N(+) hydrogen bond between the phenol and an imidazole nitrogen. (MeS)LH undergoes a reversible, one-electron, oxidation to form the radical cation [(MeS)LH](*)(+) the EPR spectrum of which is remarkably similar to that of (*)Tyr(272) in Cu-free, oxidized, apo-GO. Density Functional Theory calculations, have shown that the proton-transferred (R-O(*)...H-N(+)) form of [(MeS)LH](*)(+) has a spin density distribution--with a substantial delocalization of the unpaired electron spin density onto the ortho sulfur atom--and EPR properties that are in good agreement with those of (*)Tyr(272) in Cu-free, oxidized, apo-GO whereas the non-proton-transferred (R-O(*)(+)-H...N) form does not. The results reported herein are a further demonstration of the influence of hydrogen bonding on the nature and properties of phenoxyl radicals and strongly suggest that the phenoxyl oxygen of (*)Tyr(272) in Cu-free, oxidized, apo-GO is involved in a O(*)...H-O/N hydrogen bond.[Abstract] [Full Text] [Related] [New Search]