These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modeling protein loops with knowledge-based prediction of sequence-structure alignment.
    Author: Peng HP, Yang AS.
    Journal: Bioinformatics; 2007 Nov 01; 23(21):2836-42. PubMed ID: 17827204.
    Abstract:
    MOTIVATION: As protein structure database expands, protein loop modeling remains an important and yet challenging problem. Knowledge-based protein loop prediction methods have met with two challenges in methodology development: (1) loop boundaries in protein structures are frequently problematic in constructing length-dependent loop databases for protein loop predictions; (2) knowledge-based modeling of loops of unknown structure requires both aligning a query loop sequence to loop templates and ranking the loop sequence-template matches. RESULTS: We developed a knowledge-based loop prediction method that circumvents the need of constructing hierarchically clustered length-dependent loop libraries. The method first predicts local structural fragments of a query loop sequence and then structurally aligns the predicted structural fragments to a set of non-redundant loop structural templates regardless of the loop length. The sequence-template alignments are then quantitatively evaluated with an artificial neural network model trained on a set of predictions with known outcomes. Prediction accuracy benchmarks indicated that the novel procedure provided an alternative approach overcoming the challenges of knowledge-based loop prediction. AVAILABILITY: http://cmb.genomics.sinica.edu.tw
    [Abstract] [Full Text] [Related] [New Search]