These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of adrenalectomy on Fos expression in vasopressinergic and oxytocinergic neurons in response to stress in the rat. Author: Laguna-Abreu MT, Margatho L, Germano CM, Antunes-Rodrigues J, Elias LL, de Castro M. Journal: Stress; 2007 Nov; 10(4):332-41. PubMed ID: 17853060. Abstract: This study evaluated the responses of vasopressin (AVP) and oxytocin (OT) neurons to alterations in hypothalamo-pituitary axis activity by adrenalectomy (ADX) or after restraint stress compared with basal conditions. Wistar male rats were perfuse-fixed by cardiac perfusion under anesthesia 3 h, 1, 3 and 14 days after ADX or Sham surgery. Coronal hypothalamic sections were used for evaluation of Fos, AVP and OT expression by immunohistochemistry. Under basal conditions and after stress, Fos-AVP double labeling showed no difference in the magnocellular subdivisions of the paraventricular nuclei (PVN) or in the supraoptic nuclei (SON), suggesting that the magnocellular AVP system is unlikely to contribute to ACTH secretion after restraint in both Sham and ADX rats. Fos-AVP double labeling in the parvocellular medial paraventricular nucleus (PaMP) in ADX groups was increased after 3 h in basal conditions, and in all periods after restraint stress. There were no differences between Sham and ADX groups in Fos-OT double labeling in any subdivision of the PVN; however, in the SON, the number of Fos-OT double labeled cells was increased at all time-points after stress in the ADX group. Fos expression was increased in the PaMP after 3 h and after restraint stress in the Sham and ADX groups, especially in the ADX group. In conclusion, Fos expression in different cell populations of the PVN can be differentially regulated by short- and long-term absence of glucocorticoid negative feedback and also by stress-related excitatory and/or inhibitory neural inputs. The Fos-AVP double labeling findings in the PaMP also indicate a minor participation of these vasopressinergic neurons in the regulation of the HPA axis after ADX.[Abstract] [Full Text] [Related] [New Search]