These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: InAs/InP radial nanowire heterostructures as high electron mobility devices.
    Author: Jiang X, Xiong Q, Nam S, Qian F, Li Y, Lieber CM.
    Journal: Nano Lett; 2007 Oct; 7(10):3214-8. PubMed ID: 17867718.
    Abstract:
    Radial core/shell nanowires (NWs) represent an important class of one-dimensional (1D) systems with substantial potential for exploring fundamental materials electronic and photonic properties. Here, we report the rational design and synthesis of InAs/InP core/shell NW heterostructures with quantum-confined, high-mobility electron carriers. Transmission electron microscopy studies revealed single-crystal InAs cores with epitaxial InP shells 2-3 nm in thickness, and energy-dispersive X-ray spectroscopy analysis further confirmed the composition of the designed heterostructure. Room-temperature electrical measurements on InAs/InP NW field-effect transistors (NWFETs) showed significant improvement in the on-current and transconductance compared to InAs NWFETs fabricated in parallel, with a room-temperature electron mobility, 11,500 cm(2)/Vs, substantially higher than other synthesized 1D nanostructures. In addition, NWFET devices configured with integral high dielectric constant gate oxide and top-gate structure yielded scaled on-currents up to 3.2 mA/microm, which are larger than values reported for other n-channel FETs. The design and realization of high electron mobility InAs/InP NWs extends our toolbox of nanoscale building blocks and opens up opportunities for fundamental and applied studies of quantum coherent transport and high-speed, low-power nanoelectronic circuits.
    [Abstract] [Full Text] [Related] [New Search]