These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of growth conditions on cyclic nucleotide phosphodiesterases of cultured fibroblasts.
    Author: Pledger WJ, Thompson J, Strada SJ.
    Journal: J Cyclic Nucleotide Res; 1975; 1(6):251-9. PubMed ID: 178699.
    Abstract:
    Cyclic nucleotide phosphodiesterase activities of baby hamster kidney cells (BHK) grown in surface cultures were altered by modifying growth conditions. The untransformed BHK cells grown in medium containing 10% fetal calf serum showed non-linear LineweaverBurk plots for cyclic AMP phosphodiesterase activity with apparent Michaelis constants for cyclic AMP of approximately 5 and 30 muM. When these cells were placed in medium containing 1% fetal calf serum, linear kinetic plots for cyclic AMP phosphodiesterase with an apparent Km for cyclic AMP of approximately 20 muM were obtained. Modification of the apparent Km of BHK cell phosphodiesterase was detectable within 20 minutes after dillution of cells grown in 10% serum into fresh medium containing 1% serum. With the BHK cell line transformed with Rous sarcoma virus, differences in enzyme kinetics were not seen when these cells were diluted in 1% or 10% serum. In addition to the serum induced differences in the apparent Km of cyclic AMP phosphodiesterases of BHK cells, total cyclic AMP and cyclic GMP phosphodiesterase activities were also modified by growth conditions. BHK cells grown to high cell densities had three to five-fold higher total cyclic AMP activity than did the cells in less dense cultures. When the dense cell cultures were diluted into fresh medium containing 10% serum, total enzyme activities fell to levels comparable to those found in the rapidly growing cells at low cell densities. The reduction in total enzyme activity after dilution of BHK cells occurred rapidly and was influenced by cell density. A similar reduction of total enzyme activity was also seen in diluted RSV cells; however, the time course of the response differed from that seen in the untransformed cells.
    [Abstract] [Full Text] [Related] [New Search]