These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A stoichiometric imprinted chelating resin for selective recognition of copper(II) ions in aqueous media.
    Author: Shamsipur M, Fasihi J, Khanchi A, Hassani R, Alizadeh K, Shamsipur H.
    Journal: Anal Chim Acta; 2007 Sep 19; 599(2):294-301. PubMed ID: 17870293.
    Abstract:
    This work reports the preparation of a new copper(II) ion-imprinted polymer (IIP) material, using 5,6;14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadecane-5,14-diene (DBDA15C4) and 2-vinylpyridine (VP) as a non-vinylated chelating agent and a functional vinyl monomer, respectively. The Cu2+ ion can form stable complexes with DBDA15C4 and VP. The stoichiometries of Cu2+-DBDA15C4 and ternary Cu2+-DBDA15C4-VP complexes were elucidated using conductometric and spectrophotometric methods, and found to be Cu2+ (DBDA15C4), Cu2+ (DBDA15C4)2 and Cu2+ (DBDA15C4)(VP)2. The results obtained from solution studies were also supported by ab initio theoretical calculations. The resulting ternary complex Cu2+ (DBDA15C4)(VP)2 was copolymerized with ethyleneglycoldimethacrylate, as a cross-linking monomer, via bulk polymerization method. The imprinted copper ion was removed from the polymeric matrix by 0.1 M HNO3. The Cu2+-imprinted polymer particles were characterized by IR spectroscopy and elemental analysis. Optimum pH range for rebinding of Cu2+ on the IIP and equilibrium binding time were 7.0-7.5 and 45 min, respectively. Sorbent capacity and enrichment factor for Cu2+ were obtained as 75.3+/-1.9 micromol g(-1) and 100, respectively. In selectivity study, it was found that imprinting results in increased affinity of the material toward Cu2+ ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for five times without a significant decrease in polymer binding affinities.
    [Abstract] [Full Text] [Related] [New Search]