These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Flow cytometric analysis of micronuclei in peripheral blood reticulocytes III. An efficient method of monitoring chromosomal damage in the beagle dog. Author: Harper SB, Dertinger SD, Bishop ME, Lynch AM, Lorenzo M, Saylor M, MacGregor JT. Journal: Toxicol Sci; 2007 Dec; 100(2):406-14. PubMed ID: 17872896. Abstract: Erythrocyte-based micronucleus tests have traditionally analyzed bone marrow because splenic filtration in most species removes micronucleated cells from peripheral blood. We have evaluated a flow cytometric method for monitoring micronucleated reticulocyte frequencies (%MN-RET) in the peripheral blood of beagle dogs treated with cyclophosphamide (CP) and have found that analysis of micronucleated reticulocytes (MN-RETs) in peripheral blood is a suitable surrogate for bone marrow analysis. The three-color flow cytometric method uses anti-CD71 labeling to identify reticulocytes and Plasmodium berghei-containing erythrocytes as a calibration standard. The spontaneous %MN-RET determined by flow cytometry was 0.31 +/- 0.09% (n = 22) for peripheral blood, compared with 0.38 +/- 0.13% (SD, n = 12) for bone marrow, and 0.27 +/- 0.08% (n = 12) for peripheral blood by microscopic scoring with acridine orange staining. The kinetics of appearance and disappearance of MN-RETs in blood were determined by collecting daily samples after iv treatment with CP. The maximum frequency occurred approximately 48 h after dosing. Frequencies of MN-RETs in peripheral blood at steady state following daily CP treatment were 55-68% of corresponding bone marrow values assessed by microscopy and 55-112% as assessed by flow cytometry. This difference is presumably due to splenic removal, which appears slightly less stringent than that previously reported for CP-treated Sprague-Dawley rats. Responses in bone marrow and peripheral blood were highly correlated and similar to or greater than those reported in mice and rats at equitoxic doses.[Abstract] [Full Text] [Related] [New Search]