These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation of polymethacrylate monolithic stationary phases having bonded octadecyl ligands and sulfonate groups: electrochromatographic characterization and application to the separation of polar solutes for pressurized capillary electrochromatography. Author: Lin J, Wu X, Lin X, Xie Z. Journal: J Chromatogr A; 2007 Oct 26; 1169(1-2):220-7. PubMed ID: 17875313. Abstract: In this report, the preparation of porous polymethacrylate-based monolithic columns by in situ copolymerization of octadecyl methacrylate (OMA), 3-sulfopropyl methacrylate (SPMA) and ethylene dimethacrylate (EDMA) in a binary porogenic solvent consisting of cyclohexanol/1,4-butanediol are proposed. These monoliths possess in their structures bonded octadecyl ligands and sulfonate groups and are evaluated in pressurized capillary electrochromatography (pCEC) system using small neutral and charged solutes. While the sulfonate groups are meant to generate the electroosmotic flow (EOF) necessary for transporting the mobile phase through the monolithic capillary; the octadecyl ligands are introduced to provide the nonpolar sites for chromatographic retention for neutral solutes. However, incorporating the sulfonate groups in the monoliths does not only support the EOF but also exhibit hydrophilic interaction as well as electrostatic interaction/repulsion with the monoliths in addition to electrophoretic migration with polar charged solutes (e.g., nucleotides). The monolithic stationary phases at different EOF velocities are easily prepared by altering the amount of SPMA in the polymerization solution as well as the composition of the porogenic solvent. Optimum EOF velocity, the highest efficiency and adequate chromatographic retention are obtained when 0.6% SPMA is added to the reaction mixture. Under these conditions, rapid separation and high plate counts reaching greater than 170,000 plates/m are readily obtained.[Abstract] [Full Text] [Related] [New Search]