These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bacterial osmosensing transporters.
    Author: Wood JM.
    Journal: Methods Enzymol; 2007; 428():77-107. PubMed ID: 17875413.
    Abstract:
    Cells faced with dehydration because of increasing extracellular osmotic pressure accumulate solutes through synthesis or transport. Water follows, restoring cellular hydration and volume. Prokaryotes and eukaryotes possess arrays of osmoregulatory genes and enzymes that are responsible for solute accumulation under osmotic stress. In bacteria, osmosensing transporters can detect increasing extracellular osmotic pressure and respond by mediating the uptake of organic osmolytes compatible with cellular functions ("compatible solutes"). This chapter reviews concepts and methods critical to the identification and study of osmosensing transporters. Like some experimental media, cytoplasm is a "nonideal" solution so the estimation of key solution properties (osmotic pressure, osmolality, water activity, osmolarity, and macromolecular crowding) is essential for studies of osmosensing and osmoregulation. Because bacteria vary widely in osmotolerance, techniques for its characterization provide an essential context for the elucidation of osmosensory and osmoregulatory mechanisms. Powerful genetic, molecular biological, and biochemical tools are now available to aid in the identification and characterization of osmosensory transporters, the genes that encode them, and the osmoprotectants that are their substrates. Our current understanding of osmosensory mechanisms is based on measurements of osmosensory transporter activity performed with intact cells, bacterial membrane vesicles, and proteoliposomes reconstituted with purified transporters. In the quest to elucidate the structural mechanisms of osmosensing and osmoregulation, researchers are now applying the full range of available biophysical, biochemical, and molecular biological tools to osmosensory transporter prototypes.
    [Abstract] [Full Text] [Related] [New Search]