These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling.
    Author: Woodfield GW, Horan AD, Chen Y, Weigel RJ.
    Journal: Cancer Res; 2007 Sep 15; 67(18):8439-43. PubMed ID: 17875680.
    Abstract:
    Breast cancers expressing estrogen receptor-alpha (ERalpha) are associated with a favorable biology and are more likely to respond to hormonal therapy. In addition to ERalpha, other pathways of estrogen response have been identified including ERbeta and GPR30, a membrane receptor for estrogen, and the key mechanisms regulating expression of ERs and hormone response remain controversial. Herein, we show that TFAP2C is the key regulator of hormone responsiveness in breast carcinoma cells through the control of multiple pathways of estrogen signaling. TFAP2C regulates the expression of ERalpha directly by binding to the ERalpha promoter and indirectly via regulation of FoxM1. In so doing, TFAP2C controls the expression of ERalpha target genes, including pS2, MYB, and RERG. Furthermore, TFAP2C controlled the expression of GPR30. In distinct contrast, TFAP2A, a related factor expressed in breast cancer, was not involved in estrogen-mediated pathways but regulated expression of genes controlling cell cycle arrest and apoptosis including p21(CIP1) and IGFBP-3. Knockdown of TFAP2C abrogated the mitogenic response to estrogen exposure and decreased hormone-responsive tumor growth of breast cancer xenografts. We conclude that TFAP2C is a central control gene of hormone response and is a novel therapeutic target in the design of new drug treatments for breast cancer.
    [Abstract] [Full Text] [Related] [New Search]