These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thrombospondin-1 is an endogenous activator of TGF-beta in experimental diabetic nephropathy in vivo. Author: Daniel C, Schaub K, Amann K, Lawler J, Hugo C. Journal: Diabetes; 2007 Dec; 56(12):2982-9. PubMed ID: 17878288. Abstract: OBJECTIVE: Transforming growth factor-beta (TGF-beta), the central cytokine responsible for the development of diabetic nephropathy, is usually secreted as a latent procytokine complex that has to be activated before it can bind to its receptors. Recent studies by our group demonstrated that thrombospondin-1 (TSP-1) is the major activator of latent TGF-beta in experimental glomerulonephritis in the rat, but its role in diabetic nephropathy in vivo is unknown. RESEARCH DESIGN AND METHODS: Type 1 diabetes was induced in wild-type (n = 27) and TSP-1-deficient mice (n = 36) via streptozotocin injection, and diabetic nephropathy was investigated after 7, 9.5, and 20 weeks. Renal histology, TGF-beta activation, matrix accumulation, and inflammation were assessed by immunohistology. Expression of fibronectin and TGF-beta was evaluated using real-time PCR. Furthermore, functional parameters were examined. RESULTS: In TSP-1-deficient compared with wild-type mice, the amount of active TGF-beta within glomeruli was significantly lower, as indicated by staining with specific antibodies against active TGF-beta or the TGF-beta signaling molecule phospho-smad2/3 or the typical TGF-beta target gene product plasminogen activator inhibitor-1. In contrast, the amount of glomerular total TGF-beta remained unchanged. The development of diabetic nephropathy was attenuated in TSP-1-deficient mice as demonstrated by a significant reduction of glomerulosclerosis, glomerular matrix accumulation, podocyte injury, renal infiltration with inflammatory cells, and renal functional parameters. CONCLUSIONS: We conclude that TSP-1 is an important activator of TGF-beta in diabetic nephropathy in vivo. TSP-1-blocking therapies may be considered a promising future treatment option for diabetic nephropathy.[Abstract] [Full Text] [Related] [New Search]