These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycomic mapping of pseudomucinous human ovarian cyst glycoproteins: identification of Lewis and sialyl Lewis glycotopes. Author: Wu AM, Khoo KH, Yu SY, Yang Z, Kannagi R, Watkins WM. Journal: Proteomics; 2007 Oct; 7(20):3699-717. PubMed ID: 17880005. Abstract: Expression of sialyl Lewis x (sLe(x)) and sialyl Lewis a (sLe(a)) on cell-surface glycoproteins endows cells with the ability to adhere to E-, P-, and L-selectins present on endothelia, platelets, or leukocytes. Special arrangements of these glycotopes in cancers are thought to play a key role in metastasis. Previous studies have mostly described membrane-bound sLe(x) and sLe(a) activities. In this report, the major O-glycans of the secreted human ovarian cyst sialoglycoproteins from a Le(a+) nonsecretor individual (human ovarian cyst sample 350) were characterized by MS/MS analyses and immuno-/lectin-chemical assays. The results showed that HOC 350 carries a large number of epitopes for sLe(x), sLe(a), and Le(a) reactive antibodies. Advanced MS/MS sequencing coupled with mild periodate oxidation and exoglycosidase digestions further revealed that the O-glycans from HOC 350 are mostly of core 1 and 2 structures, extended and branched on the 3-arm with both type I and type II chains, complete with variable degrees of terminal sialylation and/or fucosylation to yield the sLe(x) or sLe(a) epitopes. Thus, the underlying core and peripheral backbone structures are similar to that of a previously proposed composite structural model for nonsialylated human ovarian cysts O-glycans, but with some notable distinguishing structural features in addition to sialylation.[Abstract] [Full Text] [Related] [New Search]