These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel synthesis of macroporous poly(N-isopropylacrylamide) hydrogels using oil-in-water emulsions. Author: Tokuyama H, Kanehara A. Journal: Langmuir; 2007 Oct 23; 23(22):11246-51. PubMed ID: 17880115. Abstract: Porous N-isopropylacrylamide (NIPA) hydrogels having a unique structure, that is, spherelike cavities distributed randomly and a homogeneous network in the gel phase, were successfully synthesized by means of an emulsion templating method; this method involves the synthesis of NIPA gels in an oil-in-water (O/W) emulsion by free radical copolymerization with a cross-linker, followed by washing (removal) of the dispersed oil as a pore template (porogen). The synthesis conditions, O/W volume ratio, amount of added surfactant, and monomer concentration affect the internal pore structure, equilibrium swelling, and swelling/shrinking kinetics. A porous hydrogel swollen at 10 degrees C has a pore diameter distribution in the range of 1-40 microm, which was observed with a scanning electron microscope. Scanning electron micrographs and swelling degree reveal that the pore size and porosity can be adjusted by varying the O/W volume ratios and surfactant amounts. The porous hydrogels show very rapid swelling/shrinking in accordance with the temperature swing. The fast response is attributed to the convection flow of water through the macropores. In addition to a faster response gel, the emulsion templating method can yield potentially intelligent gels in which the pores function as spaces for reaction, separation, and storage.[Abstract] [Full Text] [Related] [New Search]