These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Peripheral dose in ocular treatments with CyberKnife and Gamma Knife radiosurgery compared to proton radiotherapy.
    Author: Zytkovicz A, Daftari I, Phillips TL, Chuang CF, Verhey L, Petti PL.
    Journal: Phys Med Biol; 2007 Oct 07; 52(19):5957-71. PubMed ID: 17881812.
    Abstract:
    Peripheral radiation can have deleterious effects on normal tissues throughout the body, including secondary cancer induction and cataractogenesis. The aim of this study is to evaluate the peripheral dose received by various regions of the body after ocular treatment delivered with the Model C Gamma Knife, proton radiotherapy with a dedicated ocular beam employing no passive-scattering system, or a CyberKnife unit before and after supplemental shielding was introduced. TLDs were used for stray gamma and x-ray dosimetry, whereas CR-39 dosimeters were used to measure neutron contamination in the proton experiments. Doses to the contralateral eye, neck, thorax and abdomen were measured on our anthropomorphic phantom for a 56 Gy treatment to a 588 mm(3) posterior ocular lesion. Gamma Knife (without collimator blocking) delivered the highest dose in the contralateral eye, with 402-2380 mSv, as compared with 118-234 mSv for CyberKnife pre-shielding, 46-255 mSv for CyberKnife post-shielding and 9-12 mSv for proton radiotherapy. Gamma Knife and post-shielding CyberKnife delivered comparable doses proximal to the treatment site, with 190 versus 196 mSv at the thyroid, whereas protons doses at these locations were less than 10 mSv. Gamma Knife doses decreased dramatically with distance from the treatment site, delivering only 13 mSv at the lower pelvis, comparable to the proton result of 4 to 7 mSv in this region. In contrast, CyberKnife delivered between 117 and 132 mSv to the lower pelvis. In conclusion, for ocular melanoma treatments, a proton beam employing no double scattering system delivers the lowest peripheral doses proximally to the contralateral eye and thyroid when compared to radiosurgery with the Model C Gamma Knife or CyberKnife. At distal locations in the pelvis, peripheral doses delivered with proton and Gamma Knife are of an order of magnitude smaller than those delivered with CyberKnife.
    [Abstract] [Full Text] [Related] [New Search]