These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modeling of sound transmission from ear canal to cochlea.
    Author: Gan RZ, Reeves BP, Wang X.
    Journal: Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549.
    Abstract:
    A 3-D finite element (FE) model of the human ear consisting of the external ear canal, middle ear, and cochlea is reported in this paper. The acoustic-structure-fluid coupled FE analysis was conducted on the model which included the air in the ear canal and middle ear cavity, the fluid in the cochlea, and the middle ear and cochlea structures (i.e., bones and soft tissues). The middle ear transfer function such as the movements of tympanic membrane, stapes footplate, and round window, the sound pressure gain across the middle ear, and the cochlear input impedance in response to sound stimulus applied in the ear canal were derived and compared with the published experimental measurements in human temporal bones. The frequency sensitivity of the basilar membrane motion and intracochlear pressure induced by sound pressure in the ear canal was predicted along the length of the basilar membrane from the basal turn to the apex. The satisfactory agreements between the model and experimental data in the literature indicate that the middle ear function was well simulated by the model and the simplified cochlea was able to correlate sound stimulus in the ear canal with vibration of the basilar membrane and pressure variation of the cochlear fluid. This study is the first step toward the development of a comprehensive FE model of the entire human ear for acoustic-mechanical analysis.
    [Abstract] [Full Text] [Related] [New Search]