These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anterior cingulate cortex modulates preparatory activation during certain anticipation of negative picture. Author: Onoda K, Okamoto Y, Toki S, Ueda K, Shishida K, Kinoshita A, Yoshimura S, Yamashita H, Yamawaki S. Journal: Neuropsychologia; 2008 Jan 15; 46(1):102-10. PubMed ID: 17884110. Abstract: We studied the neural activation associated with anticipations of emotional pictures using functional magnetic resonance imaging (fMRI) by directly comparing certain with uncertain anticipation conditions. While being scanned with fMRI, healthy participants (n=18) were cued to anticipate and then perceive emotional stimuli having predictable (i.e., certain) emotional valences (i.e., positive and negative), given a preceding cue, as well as cued stimuli of uncertain valence (positive or negative). During anticipation of pictures with certain negative valence, activities of supracallosal anterior cingulate cortex, ventrolateral prefrontal cortex, insula, and amygdala were enhanced relative activity levels that for the uncertain emotional anticipation condition. This result suggests that these brain regions are involved in anticipation of negative images, and that their activity levels may be enhanced by the certainty of anticipation. Furthermore, the supracallosal anterior cingulate cortex showed functional connectivity with the insula, prefrontal cortex, and occipital cortex during the certain negative anticipation. These findings are consistent with an interpretation that top-down modulation, arising from anterior brain regions, is engaged in certain negative anticipation within the occipital cortex. It is thought that the limbic system involving the amygdala, ACC, and insula, engaged emotional processes, and that the input system involving the visual cortex entered an idling state.[Abstract] [Full Text] [Related] [New Search]