These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanisms of platelet and leukocyte recruitment in experimental colitis. Author: Vowinkel T, Wood KC, Stokes KY, Russell J, Tailor A, Anthoni C, Senninger N, Krieglstein CF, Granger DN. Journal: Am J Physiol Gastrointest Liver Physiol; 2007 Nov; 293(5):G1054-60. PubMed ID: 17884975. Abstract: Both leukocytes and platelets accumulate in the colonic microvasculature during experimental colitis, leading to microvascular dysfunction and tissue injury. The objective of this study was to determine whether the recruitment of leukocytes and platelets in inflamed colonic venules are codependent processes. The rolling and adherence of leukocytes and platelets in colonic venules of mice with dextran sodium sulfate (DSS)-induced colitis were monitored by intravital videomicroscopy. DSS elicited an increased recruitment of both rolling and adherent leukocytes and platelets. DSS-colitic mice rendered thrombocytopenic with anti-platelet serum exhibited profound reductions in leukocyte adhesion. Neutropenia, induced with anti-neutrophil serum, significantly reduced the adhesion of leukocytes and the accumulation of platelet-leukocyte aggregates while greatly enhancing the number of platelets that roll and adhere directly to venular endothelial cells. The enhanced platelet adhesion associated with neutropenia was mediated by platelet P-selectin interactions with endothelial cell P-selectin glycoprotein ligand (PSGL-1). DSS colitis was also associated with an increased expression of PSGL-1 in the colonic vasculature. These findings indicate that the recruitment of leukocytes and platelets in inflamed colonic venules are co-dependent processes.[Abstract] [Full Text] [Related] [New Search]