These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spermatozoa modulate epididymal cell proliferation and protein secretion in vitro. Author: Reyes-Moreno C, Laflamme J, Frenette G, Sirard MA, Sullivan R. Journal: Mol Reprod Dev; 2008 Mar; 75(3):512-20. PubMed ID: 17886270. Abstract: Normal epididymal function, such as protein expression and secretion, is primarily regulated by testicular androgens and temperature. However, the role of spermatozoa in this critical process has never been studied. In order to determine whether sperm itself could regulate epididymal function, we have developed a cell culture system of bovine epididymal cells to study the interactions between spermatozoa and the epididymal epithelium. Primary cells from caput, corpus, and cauda epididymal tissues were cultured in the presence of androgens at 32 degrees C (scrotal) and 37 degrees C (abdominal). Newly synthesized proteins were metabolically labeled with (35)S-methionine after sperm co-incubation and the pattern of secreted proteins was analyzed by two-dimensional polyacrylamide gel electrophoresis. Proliferation rate, protein secretion rate and electrophoretic patterns of secreted proteins were evaluated 48 hr post-co-incubation. Incubation at 32 degrees C indicated that spermatozoa stimulation increases the level of protein secretion of cultured cells from all epididymal sections while it slightly decreases proliferation of corpus cells. At 37 degrees C, spermatozoa co-incubation significantly decreases the protein secretion rate of cultured cells from all epididymal sections. Independently of cell incubation temperature, spermatozoa stimulation induces both an increase in the intensity of radiolabeled proteins and the appearance of new secreted proteins of caput cells without affecting the protein pattern of corpus or cauda cells. Incubation at 37 degrees C, however, greatly modifies the pattern of proteins expressed at 32 degrees C by cauda cells. Taken together, these results support the hypothesis that spermatozoa themselves affect epididymal cell function, most importantly for caput epididymides.[Abstract] [Full Text] [Related] [New Search]