These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Imbalance between CaM kinase II and calcineurin activities impairs caffeine-induced calcium release in hypertrophic cardiomyocytes.
    Author: Lu YM, Shioda N, Han F, Moriguchi S, Kasahara J, Shirasaki Y, Qin ZH, Fukunaga K.
    Journal: Biochem Pharmacol; 2007 Dec 15; 74(12):1727-37. PubMed ID: 17888407.
    Abstract:
    Cardiac hypertrophy impairs Ca(2+) handling in the sarcoplasmic reticulum, thereby impairing cardiac contraction. To identify the mechanisms underlying impaired Ca(2+) release from the sarcoplasmic reticulum in hypertrophic cardiomyocytes, we assessed Ca(2+)-dependent signaling and the phosphorylation of phospholamban, which regulates Ca(2+) uptake during myocardial relaxation and is in turn regulated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and calcineurin. In cultured rat cardiomyocytes, treatment with endothelin-1, angiotensin II, and phenylephrine-induced hypertrophy and increased CaMKII autophosphorylation and calcineurin expression. The calcineurin level reached its maximum at 72h and remained elevated for at least 96h after endothelin-1 or angiotensin II treatment. By contrast, CaMKII autophosphorylation, phospholamban phosphorylation, and caffeine-induced Ca(2+) mobilization all peaked 48h after these treatments. By 96h after treatment, CaMKII autophosphorylation and phospholamban phosphorylation had returned to baseline, and caffeine-induced Ca(2+) mobilization was impaired relative to baseline. A similar biphasic change was observed in dystrophin levels in endothelin-1-induced hypertrophic cardiomyocytes, and treatment with the novel CaM antagonists DY-9760e and DY-9836 significantly inhibited the hypertrophy-induced dystrophin breakdown. Taken together, the abnormal Ca(2+) regulation in cardiomyocytes following hypertrophy is in part mediated by an imbalance in calcineurin and CaMKII activities, which leads to abnormal phospholamban activity.
    [Abstract] [Full Text] [Related] [New Search]